딥러닝, 표현력 최대로! – 비선형 활성화 함수
활성화 함수에 비선형 특성을 더하면, 딥러닝 모델이 훨씬 고차원의 복잡한 특성을 학습할 수 있습니다. 인공 신경망의 구조를 통해 데이터가 선형, 비선형 적으로 변환되는 과정을 관찰해봅니다. 딥러닝이 비정형적인 데이터에서도 특징을 추출하여 학습할 수 있는 이유에 대해 이해할 수 있습니다.
나융 | 2024.05.08
활성화 함수에 비선형 특성을 더하면, 딥러닝 모델이 훨씬 고차원의 복잡한 특성을 학습할 수 있습니다. 인공 신경망의 구조를 통해 데이터가 선형, 비선형 적으로 변환되는 과정을 관찰해봅니다. 딥러닝이 비정형적인 데이터에서도 특징을 추출하여 학습할 수 있는 이유에 대해 이해할 수 있습니다.
나융 | 2024.05.08