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Abstract

Vehicle re-identification aims to obtain the same vehi-
cles from vehicle images. This is challenging but essen-
tial for analyzing and predicting traffic flow in the city.
Although deep learning methods have achieved enormous
progress for this task, their large data requirement is a crit-
ical shortcoming. Therefore, we propose a synthetic-to-real
domain adaptation network (StRDAN) framework, which
can be trained with inexpensive large-scale synthetic and
real data to improve performance. The StRDAN training
method combines domain adaptation and semi-supervised
learning methods and their associated losses. StRDAN of-
fers significant improvement over the baseline model, which
can only be trained using real data, for VeRi and CityFlow-
ReID datasets, achieving 3.1% and 12.9% improved mean
average precision, respectively.

1. Introduction

Vehicle re-identification (Re-ID) aims to identify the
same vehicles that are captured by various cameras. It is
an essential technology for analyzing and predicting traffic
flow in smart cities and uses visual appearance based Re-ID
methods in general. However, vehicle Re-ID is challenging
for two reasons.

• Different lighting and complex environments create
difficulties with appearance based vehicle Re-ID, and
large apparent variations can be generated using differ-
ent cameras.

∗Corresponding author

Figure 1. Proposed synthetic-to-real domain adaptation method to
improve vehicle re-identification performance. It can be difficult
to obtain meaningful labels for real data, but it is relatively simple
for synthetic data.

• Different vehicles can be visually very similar when
they are in the same type category.

Deep learning methods [23, 10, 17] are commonly em-
ployed to tackle this complex vehicle Re-ID task with sig-
nificant progress. These models extract features using deep
learning networks and distinguish vehicles by comparing
feature distances. However, they require large datasets for
training and improved performance, which rapidly becomes
a drawback. Many studies [30] have confirmed that more
training data provides better model performance. There-
fore, data from real environments require considerable an-

1

ar
X

iv
:2

00
4.

12
03

2v
2 

 [
cs

.C
V

] 
 1

7 
Ju

l 2
02

0



notation workload. On the other hand, domain adaptation
approaches employ inexpensive synthetic data to replace
real data.

This paper explores how to improve model performance
using inexpensive synthetic data (see Fig. 1). We adopted
an adversarial domain adaptation approach [4] where an
artificial neural network (ANN) learns the best discrimi-
nating features for classification using real data, while si-
multaneously learning indistinguishable features between
real and synthetic data [1] [5]. To implement this concept,
we introduce a domain discrimination layer and associated
cross-entropy loss to train the whole network to be indis-
criminative for both domains. We also adopted a semi-
supervised learning method to better exploit specific syn-
thetic data labels, such as color, type, and orientation. Since
these labels only exist for synthetic data, a semi-supervised
learning approach that can handle unlabeled data is appro-
priate to improve performance. In training, classification
losses for the exclusive labels are selectively applied de-
pending on the data domain [30]. The proposed model
trained on real and synthetic data from the AI City Chal-
lenge using domain adaptation and semi-supervised learn-
ing approaches achieved 12.9% improvement over the base-
line model, which was trained with only real data.

This work proposes a novel synthetic-to-real domain
adaptation network StRDAN framework, with major con-
tributions as follows.

• StRDAN can be successfully trained with inexpensive
large-scale synthetic as well as real data to improve
performance.

• We propose a new training approach for StRDAN,
combining domain adaptation and semi-supervised
learning methods and corresponding losses.

• StRDAN shows significant improvement over the
baseline model for two significant data sets: VeRi [15]
and CityFlow-ReID [25].

2. Related Work
This section reviews relevant prior studies regarding ve-

hicle Re-ID and domain adaptation methods with synthetic
data.

Vehicle Re-ID: Vehicle Re-ID methods generally incor-
porate contrastive loss and spatio-temporal features. Previ-
ous studies [14, 15, 16] have proposed several contrastive
loss based methods, such as siamese networks, triplet loss,
and metric learning. Liu et al. [15] introduced the VeRi
dataset, being the first large scale vehicle Re-ID benchmark.
Spatio-temporal features are critical for performance im-
provement and have helped vehicle Re-ID studies to achieve
huge progress. Tan et al. [23] used spatial-temporal features
for multi-camera vehicle tracking and vehicle Re-ID to win

the AI City Challenge in 2019 [18]. Shen et al. [22] pro-
posed a two-stage framework to match visual appearance
based on an long-short term memory (LSTM) based path
inference mechanism.

Domain Adaptation with Synthetic Data: To over-
come the lack of data, Zhou et al. [34, 35] proposed a
method to improve Re-ID performance by augmenting var-
ious viewpoint vehicle images with generative adversarial
networks (GANs). Performance significantly reduces when
deploying trained models onto new datasets due to differ-
ences among the datasets, commonly called domain bias.
Peng et al. [19] proposed a domain adaptation framework
to address this problem, incorporating an image-to-image
translation network and an attention based feature learn-
ing network. The VehicleX [29] simulator also leverages
synthetic data and domain randomization to overcome the
reality gap [26, 27]. Although Liu et al. [12] proposed a
domain adaptation method, they only considered real-to-
real domain adaptation. The recently proposed PAMTRI
approach [24] uses synthetic data to improve model perfor-
mance and has similar architecture to the proposed StRDAN
framework. However, PAMTRI requires considerable effort
to obtain vehicle pose and labels for real data, whereas StR-
DAN uses domain adaptation to utilize synthetic data and
semi-supervised learning does not require additional anno-
tation workload. Thus, StRDAN is somewhat simpler and
easier to train.

3. Proposed Synthetic-to-Real Domain Adap-
tation Network

3.1. Datasets

We developed an ANN using real and synthetic vehicle
datasets provided for Track 2 of the 2020 AI City Challenge.
The real dataset was the CityFlow-reID dataset, a subset of
CityFlow made available for the Track 2 challenge compris-
ing 56,277 images for 666 unique vehicles collected from
40 cameras, with 36,935 images from 333 vehicle identities
for training, and 18,290 images from the other 333 identi-
ties for testing. The remaining 1052 images in the test set
were provided as query data.

The synthetic vehicle dataset comprised 192,150 images
from 1,362 distinct vehicles created using the VehicleX [29]
synthetic dataset generator, forming an augmented training
set. The synthetic dataset includes vehicle ID, color, type,
and object orientation; whereas the real dataset includes
only vehicle ID. Vehicles were distinguished into 12 colors
and 11 types, and orientation was represented by rotation
angle [0, 360) on the horizontal plane.

We trained and evaluated the proposed StRDAN model
using the VeRi real dataset [8] and City Challenge synthetic
data to examine validity and robustness for the approach.
The Veri dataset contains over 50,000 images for 776 vehi-
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Figure 2. Proposed synthetic-to-real domain adaptation network architecture comprising a ResNet-50 backbone for feature extraction and
five fully connected softmax layers for classification, trained using joint and disjoint losses between synthetic and real data.

cles captured by 20 cameras, with the training set contain-
ing 37,781 images for 576 vehicles, and the testing set con-
taining 11,579 images for 200 vehicles. The VeRi dataset
includes labels for vehicle color and type.

3.2. Overall Architecture

Figure 2 shows the proposed overall StRDAN architec-
ture. The model comprises a backbone network for feature
extraction and multiple fully connected (FC) softmax layers
for classification. Input images are batch sampled in equal
numbers from the real and synthetic datasets. For a mini-
batch, n different vehicle identities are chosen from the real
and synthetic datasets, respectively, then m samples are ran-
domly selected from these chosen images. Therefore, each
batch contains 2× n×m images.

The backbone network extracts a highly abstracted fea-
ture vector (dim = 2048) from the input image. In prin-
ciple, any convolution neural network (CNN) designed for
image classification can be used as the backbone network,
and a variety of CNNs have been employed in previous
studies, including VGG-CNN-M1024 [3], MobileNet [9],
and ResNet [7], as vehicle Re-ID model backbone. We
selectedResNet-50 as the backbone network for StRDAN.
Feature maps extracted by the backbone network are flat-
tened and fed into various FC softmax layers to classify ve-

hicle id, real or synthetic, color, type, and orientation. Out-
puts are then fed into five cross-entropy loss functions and
one triplet loss function. StRDAN was end-to-end trained
by updating the network parameters to reduce total loss,
combining cross-entropy and triplet losses.

3.3. Key Features

Adversarial Domain Adaptation. An annotated dataset
is essential for deep neural network supervised learning.
However, collecting and manually annotating large datasets
is time consuming and expensive. Therefore, the VehicleX
approach was introduced in the AI City Challenge to gen-
erate automatically labeled data using a graphic simulator
and hence overcome the dearth of real data. However, syn-
thetic data has similar but different distributions than real
data. Therefore, it is necessary to train the ANN to predict
the classification, regardless of the input domain.

We adopted the adversarial domain adaptation approach,
where the ANN learns features that are most discrimina-
tive for classification on the real domain and simultaneously
as indistinguishable as possible between the real and syn-
thetic domains [1] [5]. To implement this approach, we in-
troduced a domain discrimination layer and its associated
cross-entropy loss train the network to be indiscriminate to
the domains. We also introduced a vehicle-id classification
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layer and its associated cross-entropy loss along with triplet
loss to train the network to better discriminate vehicle iden-
tities and shape signatures.

Semi-supervised Learning. In contrast with the real
data, synthetic data includes vehicle type, color, and orien-
tation labels, and we use these labels under multitask learn-
ing to improve generalization performance for all tasks [31].
Many semi-supervised learning approaches improve learn-
ing accuracy by combining a small amount of labeled data
with a large amount of unlabeled data during training. Zhai
et al.?s work [30] created artificial labels for unlabeled and
labeled data and utilize them in training, and this approach
inspired us to use joint and disjoint labels between real and
synthetic data to improving performance. Joint labels at-
tached to real and synthetic data are vehicle ID and domain
(real or synthetic), whereas disjoint labels were attached to
only synthetic data and includes vehicle type, color, and ori-
entation. Losses were classified as joint or disjoint losses,
associated with joint and disjoint labels, respectively, as
shown in Fig. 2. Triplet loss is classified as a joint loss
because the vehicle id contributes to distinguishing batch
images into anchor, positive, or negative images.

The semi-supervised learning approach considered here
has learning objective

min
θ
Ljoint(θ) + wLdisjoint(θ), (1)

where Ljoint is the joint loss defined in both real and syn-
thetic domains and Ldisjoint is the disjoint loss defined in
the synthetic domain. θ is parameters of the network. In the
next section, we will describe the losses in more detail.

4. Loss Function

4.1. Joint Losses

Vehicle ID. Cross-entropy following the softmax func-
tion is the most commonly employed loss for image clas-
sification, and can be represented for vehicle ID classifier,
Lid, as follows

Lid = −
1

N

N∑
i=1

C∑
j=1

yij log(ŷij) (2)

where N denotes the number of images in a mini-batch, C
is the number of classes, yij is the jth element of an one
hot encoded vector for the ground-truth of the ith sample in
a mini-batch, and ŷij is the jth element of the softmax FC
layer for the ith image.

Domain. We adopted the adversarial domain adaptation
approach, with real and synthetic domains. A softmax FC
layer was added to the backbone network for domain dis-
crimination, with loss function to train the network to be

indiscriminate to the domains,

Ldomain =
1

N

N∑
i=1

yi log(ŷi) + (1− yi) log(1− ŷi). (3)

Domain discrimination loss is defined as the negative of bi-
nary cross-entropy loss. Since cross-entropy loss trains the
network to discriminative between the domains, the nega-
tive loss trains the model to be less discriminating. Thus,
if a vehicle captured by a camera is drawn by a graphic
simulator in the same orientation, features extracted from
a synthetic image would be similar to that from a real im-
age since domain dependent features are suppressed. The
negative cross-entropy loss function was implemented by a
gradient reversal layer [4].

Triplet Loss. In a mini-batch that contains P identities
and Q images for each identity, each image (anchor) has
Q − 1 images of the same identity (positives) and (P −
1) × Q images of different identities (negatives). Triplet
loss pulls the positive pair (a, p) together while pushing the
negative pair (a, n) away by some margin. Thus, triplet
loss trains the network to minimize the distance between
features from the same image classes and simultaneously
maximizes distance between features from different image
classes. Triplet loss is defined as [8]

Ltri =

P∑
i=1

Q∑
a=1

[
m+ max

p=1...Q
p 6=a

D(va,i, vp,i)

− min
j=1...P
n=1...Q
j 6=i

D(va,i, vn,j)

]
+

(4)

where va,i is the prediction vector for the ath image of the
ith identity group, and m is the margin to control the differ-
ence between positive and negative pair distances and helps
cluster the distribution more densely.

4.2. Disjoint Losses

Color, Type, and Orientation. Softmax cross-entropy
loss was applied for these three targets. Orientation is con-
tinuous and numerical, whereas color and type are categor-
ical and nominal. Therefore, it seems reasonable to use re-
gression to predict orientation, but orientation is a difficult
problem for regression due to the wide range of the regres-
sion target. Indeed, experiments showed that optimization
would not converge for regression. Therefore, we predicted
orientation as direct classification into n discrete bins, with
softmax cross-entropy loss [33] or [6], dividing the 360 de-
grees of orientation space into six bins of 60 degrees. Cross-
entropy losses for color, type, and orientation were only ap-
plied to synthetic images and set to zero for real images.
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The loss function can be expressed as

Lx = − 1

N

N∑
i=1

C∑
j=1

δiyij log(ŷij), δi ∈ {1, 0}, (5)

where x is one of color, type, and orientation, and δi is a
mask value that is set to 1 if the ith data in a mini-batch has
x, and 0 otherwise.

5. Experiments

5.1. Evaluation Metric

We used rank-K mean Average Precision (mAP), the
official AI City Challenge evaluation metric, to evaluate
model performances. mAP measures the mean average pre-
cision for each query considering only the top K matches,
where we chose K = 100. Average precision was computed
for each query image from the area under the precision-
recall curve, and then the mean of the average precision over
all queries was computed.

5.2. Implementation

The chosen backbone network, ResNet-50, was initial-
ized with weights pre-trained on ImageNet [21] to accel-
erate training. We trained the model end-to-end with an
AMSGrad optimizer [20] for 60 epochs. Initial learning rate
= 0.0003, reduced by 0.1 after 20 and 40 epochs. Weight
decay factor for L2 regulation was set = 0.0005, and batch
size = 64. For each mini-batch, two different vehicle-IDs
were selected from each of the real and synthetic datasets,
and four images with the same ID were sampled. There-
fore, 16 different images with four different IDs from real
and synthetic datasets were sampled. Input images were re-
sized to 128 x 256 pixel, and we employed horizontal flip
and random erasure augmentations. Postprocessing used
the re-ranking algorithm [32], to order the distance matrix
between features with Jaccard and original output distance.

5.3. Results and Discussion

We trained and evaluated our models using the
CityFlow-reID and VeRi real datasets along with synthetic
data generated by VehicleX, with selected disjoint losses as
shown in Table 1 and Table 2.

Performance on AI City Dataset. The baseline
(Case 1) model comprised the backbone network and ve-
hicle ID classifier. The baseline was trained with the
real dataset using vehicle-ID cross-entropy and triplet
losses. Table 1 shows that the proposed domain adaptation
and semi-supervised learning approaches significantly im-
proved model performance compared with the baseline by
at least 8.5% (Case 8) up to 12.9% (Case 4). The proposed
model exhibited best performance for Case 4, where only

Table 1. Evaluation results of the StRDAN trained with CityFlow-
reID and VehicleX datasets for the 2020 AI City Challenge, Track
2. The results are from the official evaluation leaderboard of the
challenge.

Case O C T V D Dataset mAP
1 X R 25.5
2 X X X R+S No Conv.
3 X X X R+S 35.2
4 X X X R+S 38.4
5 X X X X R+S 34.1
6 X X X X R+S 37.5
7 X X X X R+S 35.3
8 X X X X X R+S 34.0

Table 2. Evaluation results of the StRDAN trained with VeRi and
VehicleX datasets.

Case O C T V D Dataset mAP
1 X R 73.0
2 X X X R+S 76.1
3 X X X R+S 74.2
4 X X X R+S 74.9
5 X X X X R+S 74.7
6 X X X X R+S 75.3
7 X X X X R+S 74.8
8 X X X X X R+S 74.6

Notes: O, C, T, V, D = orientation, color, type, vehicle ID,
and domain, respectively.
R, S = real and synthetic data, respectively.
No Conv. = no convergence
mAP = mean average precision
Boxes are checked if target loss was included.
Best result is shown in bold.

vehicle type was considered, whereas Case 8 considered all
three labels and exhibited the worst performance.

Performance on VeRi Dataset. Table 2 also shows
that domain adaptation and semi-supervised learning ap-
proaches with synthetic dataset and additional losses helped
improve performance by at least 1.2% (Case 3) up to 3.1%
(Case 2). In contrast to the AI City dataset, the best per-
formance was when considering only orientation (Case 2).
However, the model could not converge with the AI City
dataset. Veri data model performances were much superior
than those for AI City data. Table 3 compares the proposed
StRDAN approach with other methods. All models were
trained using only the VeRi dataset, aside from PAMTRI
and StRDAN (R+S). The proposed StRDAN (R+S) model
outperformed all other considered methods.

Domain Adaptation and Semi-supervised Learning.
The experimental results verified that domain adaptation
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Table 3. Comparing Deep learning methods on the VeRi dataset.

Method mAP
FACT[13] 18.7
ABLN[35] 24.9
OIFE[28] 48.0

PROVID[16] 48.5
PathLSTM[22] 58.3

GSTE[2] 59.5
VAMI[36] 61.3

BA[11] 66.9
BS[11] 67.6

PAMTRI[24] 71.9
StRDAN (R, baseline) 73.0
StRDAN (R+S, best) 76.1

and semi-supervised learning approaches help extract more
important semantic features for vehicle Re-ID. However,
further research is required regarding unexpected phenom-
ena as follows.

• The best model was trained with only one loss of three
disjoint losses.

• Performance degraded with including more disjoint
losses.

• Best performance depended on the real dataset.

6. Conclusions
This paper proposes using domain adaptation and semi-

supervised learning to fully utilize synthetic data. Experi-
ment results confirmed that increasing training data via with
domain adaptation improved performance. We also showed
that using semi-supervised learning with labels only avail-
able for synthetic data helped the model extract more se-
mantic features.

Future work will investigate the following issues.

• Synergy between disjoint losses and real-world data
dependency on disjoint losses, as discussed above.

• Reality effects on synthetic data. Image data synthe-
sized by VehicleX was far from realistic and hence eas-
ily distinguishable from real image data. More realis-
tic synthetic data from more sophisticated simulation
software could further improve performance.

• Orientation prediction. We converted orientation re-
gression to six bin classification, but we have not op-
timized bin count. Since orientation is a key feature
to identify vehicles captured at various camera angles,
proper orientation representation will also help to im-
prove performance.
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