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Abstract

Vehicle re-identification helps in distinguishing between images of the same and other vehicles. It is a challenging process because of
significant intra-instance differences between identical vehicles from different views and subtle inter-instance differences between
similar vehicles. To solve this issue, researchers have extracted view-aware or part-specific features via spatial attention mechanisms,
which usually result in noisy attention maps or otherwise require expensive additional annotation for metadata, such as key points,
to improve the quality. Meanwhile, based on the researchers’ insights, various handcrafted multi-attention architectures for specific
viewpoints or vehicle parts have been proposed. However, this approach does not guarantee that the number and nature of attention
branches will be optimal for real-world re-identification tasks. To address these problems, we proposed a new vehicle re-identification
network based on a multiple soft attention mechanism for capturing various discriminative regions from different viewpoints more
efficiently. Furthermore, this model can significantly reduce the noise in spatial attention maps by devising a new method for creating
an attention map for insignificant regions and then excluding it from generating the final result. We also combined a channel-wise
attention mechanism with a spatial attention mechanism for the efficient selection of important semantic attributes for vehicle re-
identification. Our experiments showed that our proposed model achieved a state-of-the-art performance among the attention-based
methods without metadata and was comparable to the approaches using metadata for the VehicleID and VERI-Wild datasets.
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1. Introduction
Vehicle re-identification (Re-ID) identifies the same vehicle from
numerous images. It searches for the same car in gallery images
as depicted in a given query image. This task received consider-
able attention recently because the Re-ID technology can be used
to analyse traffic flow, which is used to build smart cities and is
an essential technology for surveillance systems. Vehicle Re-ID is
particularly challenging because their exteriors can be captured
in numerous environments, and different lights and viewpoints
can cause significant intra-instance differences. Other vehicles
can also look similar because of matching colours and general
vehicle types.

Recent studies have used convolutional neural networks
(CNNs) and metric learning methods (Jiang et al., 2018; Khor-
ramshahi et al., 2019a; Lee et al., 2020, 2022; Liu et al., 2018; Tang et
al., 2017; Zhang et al., 2017; Zhou & Shao, 2018). In the latter, ve-
hicle images are encoded to a representative vector in embedding
space, and the distances between the vectors are compared. Thus,
it is crucial to select robust features to accommodate variations
in environments, light conditions, and viewpoints.

To effectively identify the same vehicles, several studies have
adopted metadata attributes (e.g., orientation, colour, type, key-
point, viewpoint, and spatiotemporal information) (Jiang et al.,
2018; Shen et al., 2017; Tang et al., 2017; Wang et al., 2017). Re-
cent studies have semantically divided vehicles into its parts us-
ing image segmentation and mask them; furthermore, features

are extracted from the segmented regions (Chen et al., 2020b; He
et al., 2019; Meng et al., 2020). These methods can compare not only
global appearance but also vehicle parts; thus, subtle vehicle parts
can be embedded and compared. However, they have a major
drawback because they require extensive image annotation. Par-
ticularly, labelling vehicle parts, such as segmentation and bound-
ing box creation, requires significant time than labelling images.
According to the report (Lin et al., 2014), segmenting takes 15 times
longer than spotting object locations and 60 times longer than im-
age labelling.

In recent years, the combination of deep learning and visual
attention mechanism has been explored to increase the perfor-
mance of vehicle Re-ID tasks (Wang et al., 2019). The visual atten-
tion is formed by training deep neural networks to learn which
areas need to be focused on in each new image. Based on their
insights, many researchers have proposed various handcrafted
spatial attention-based models equipped with multi-attention
branches for specific viewpoints and vehicle parts. For instance,
some researchers have developed multi-view attention networks
(MVANs) in which each branch learns viewpoint-specific features
for three to five views (e.g., front, rear, top, and side views) (Chen et
al., 2020a, b; Teng et al., 2021; Zhang et al., 2020; Zhou & Shao, 2018).
Others have devised part-oriented attention networks that local-
ize various salient vehicle parts, such as the windshield and car
head, for hard part-level attention and then provide an additional
soft attention refinement at the pixel level (Guo et al., 2019; Zhang
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Figure 1: Activation heat maps, associated with attention weights, visualized by Grad-CAM (Zhang et al., 2020) for (a) the baseline model with single
attention, (b) the proposed model with double attentions, (c) the baseline model with four attentions, and (d) the proposed model with five attentions.
The right-most heat maps in (b) and (d) represent the attention map for background or insignificant areas, and the associated feature map is discarded
from producing the output results. Compared with the baseline, the proposed model suppresses noise from the spatial attention maps and captures
subtle discriminative regions useful for distinguishing vehicles.

et al., 2020). However, as shown in Figs. 1(a) and (c), spatial atten-
tion mechanisms are usually hampered by noise generated atten-
tion maps or require expensive additional annotation for meta-
data attributes, such as keypoints, to improve quality (Chen et al.,
2020a). Moreover, the handcrafted spatial attention architecture
does not ensure that the number and types of attention branches
are optimal for real-world Re-ID tasks.

To solve these problems, we proposed the multi-attention-
based soft partition (MUSP) network, which uses multiple and
soft attention mechanisms in the spatial and channel-wise di-
rections, as shown in Fig. 2. Multi-attention enables the model
to learn diverse features from various discriminated regions
and different viewpoints without introducing any artificial part-
specific and view-dependent attention branches. Soft attention
gives continuous values of the region mask; its weights can be
learned through backpropagation during training, as it is fully
differentiable (Wang et al., 2019). We also combined a channel-
wise attention mechanism with a spatial attention mechanism
to select the better semantic attributes that are meaningful
for vehicle Re-ID. Finally, we introduced a novel method for re-
moving noise from spatial attention maps. In our framework,
as shown in Fig. 2, we first apply multiple spatial attention
weights to feature maps encoded from a vehicle image, fol-
lowed by channel-wise attention weights. Here, the last feature
map with spatial attention applied is excluded from the input
of the channel-wise attention branch. Thus, the edge from the
node of the final feature map to the next step in the compu-
tation graph is dropped out. Then, the spatial attention weights
of the indiscriminative regions are aggregated into the last at-
tention map due to backpropagation training. Simultaneously,

the spatial attention weights of the salient areas contributing to
the final result are collected in the other attention maps. Fig-
ure 1(c) shows the heat map of the resulting attention weights
for a four-attention-based model in which all spatial atten-
tion maps are used for training and inference. The attention
maps contain a lot of noise. However, as shown in Fig. 1(d), our
model’s first to fourth attention maps are clean. Here, the last
fifth map, which is excluded from further computation in the
pipeline, contains attention weights that are highly activated to
the background or irrelevant parts. Our experiments revealed
that our proposed model achieved a state-of-the-art (SOTA) per-
formance among the attention-based methods without meta-
data and was comparable to the approaches using metadata for
the VehicleID (Liu et al., 2016c) and VERI-Wild (Liu et al., 2016a)
datasets.

In summary, the main contributions of our approach are as
follows:

(i) We proposed a novel MUSP network for vehicle Re-ID.
With multiple spatial attention and channel-wise attention
mechanisms, the model can learn to highlight the most
discriminant regions and suppress the distraction of irrel-
evant parts without introducing any artificial part-specific
and view-dependent attention branches.

(ii) We developed a novel method that reduces noise in spatial
attention maps so significantly that we solved the problem
of spatial attention mechanisms generating noise in atten-
tion maps.

(iii) Our approach achieved SOTA performance among the
attention-based approaches that did not use metadata and
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Figure 2: Proposed MUSP pipeline. First, the image is placed in the backbone network (ResNet50). The features extracted from the backbone network
go through the attention-based network, which is sequentially composed of spatial and channel-based attention modules. The n − 1 vectors obtained
from the attention-based network and a global vector obtained using average pooling are used to train the model using triplet, spatial diversity, and
cross-entropy losses. In the inference stage, a total of n vectors are calculated using the co-occurrence attentive module.

showed comparable performance to the methods that used
metadata in the experiments using the VehicleID (Liu et al.,
2016c) and VERI-Wild (Liu et al., 2016a) datasets.

The rest of the paper is organized as follows: Section 2 re-
views recent related studies in detail, particularly on attention-
based approaches. Section 3 describes the architecture of the pro-
posed system and detailed algorithms for each step. Section 4 dis-
cusses loss functions for training the model. Section 5 demon-
strates our approach’s effectiveness and competitiveness on nu-
merous challenging vehicle Re-ID benchmarks through extensive
experiments. Finally, Section 5 concludes this paper.

2. Related Work
Vehicle Re-ID technology has advanced enormously and is
strongly driven by access to several large datasets (Kanaci et al.,
2018; Liu et al., 2016c; Lou et al., 2019b), which enable models to
be trained and tested more closely in real-world environments.
Deep and metric learnings have been used for vehicle Re-ID tasks.
Additional representative features must be extracted when em-
bedding vehicle images in the feature space to increase metric
learning performance. Consequently, numerous attempts to use
the metadata of vehicles have been introduced, such as orienta-
tion, colour, type, key points, viewpoint, and spatiotemporal data.
Additionally, most researchers have combined deep learning and
visual attention mechanisms to extract the features of the dis-
tinguishing regions to improve the accuracy of the vehicle Re-ID
task. The problem here is to identify the type of attention mecha-
nism that is more efficient and adaptive among the various types
of attention networks. Recently, various methods of using genera-
tive adversarial networks (GANs) have also been proposed (Zhou
& Shao, 2017, 2018); however, there is a large gap between the
generated features and reality due to the limitations of the gen-
eration ability of the existing GANs and the lack of adversarial
samples.

2.1 Metadata
Temporal data have been adopted by several studies for efficient
vehicle Re-ID (Jiang et al., 2018; Liu et al., 2016c; Shen et al., 2017).

Shen et al. (2017) used temporal information to track gradual vehi-
cle changes from different cameras, which enabled them to recog-
nize the same vehicle that looked different and overcome the lim-
itations of the method using only spatial information. However,
this method has a disadvantage because a continuous stream of
images is required. Liu et al. (2016c) re-ranked the images using
temporal information after vehicle detection. This approach re-
quires the temporal information of each vehicle even in the in-
ference stage. Furthermore, Jiang et al. (2018) used temporal infor-
mation and spatial information for re-ranking.

Previous studies used vehicle key points for vehicle Re-ID (Khor-
ramshahi et al., 2019a; Wang et al., 2017). Wang et al. (2017) not
only used temporal information but also estimated orientation
using key points and extracted orientation-invariant features to
improve the performance of vehicle Re-ID. Khorramshahi et al.
(2019a) used key points to exploit local features. The key-point-
based method has the following disadvantages: it cannot cope
with various types of vehicles that do not exist in the training data
and additional key point labels are required.

Recent studies (Chen et al., 2020b; Liu et al., 2018; Meng et al.,
2020) introduced a method of segmenting and comparing vehi-
cle parts using metadata. This method is similar to how humans
identify objects by segmenting the parts of a vehicle and compar-
ing each part separately. Liu et al. (2018) used a detection model
to segment vehicle parts. Chen et al. (2020b) proposed a model
that segments vehicle parts in a weakly supervised method us-
ing the orientation of the vehicle to improve the performance of
vehicle Re-ID. Meng et al. (2020) used a supervised segmentation
model to divide vehicles. These methods have improved perfor-
mance but have the disadvantage of requiring additional annota-
tions or models. Detection and segmentation require numerous
data resources, and the model is heavy.

2.2 Visual attention
The visual attention mechanism enables deep neural networks
to learn the areas that must be focused during training. Figure 1
shows the learnt attention maps of several vehicle images, and
the highlighted areas correspond to the subtle and discrimina-
tive regions. The attention mechanism automatically extracts the
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Table 1. Attention-based approaches for vehicle Re-ID.

Method
Branch
count Attention branch

Spatial/
channel

Soft/
hard

Extra
annotation Loss Backbone

VAMI (Zhou & Shao, 2018) 5 Five views Sp S Viewpoint,
model,
type, and
colour

Id, adversarial, model,
type, and colour

F-Net

SCAN (Teng et al., 2018) 2 Spatial and channel Sp and Ch S Triplet and id VGG-CNN-M-
1024

TAMR (Guo et al., 2019) 3 Global, windscreen,
and car-head

Sp S Model Ranking(2), pairwise,
and id

ResNet18

VCAM (Chen et al., 2020a) 1 View-channel Ch S, H+S Viewpoint Viewpoint, triplet, and
id

ResneXt-101

SPAN (Chen et al., 2020b) 3 Front, side, and rear Sp S Viewpoint Triplet, id, mask
reconstruction, area
constraint, and
spatial diversity

ResNet50

SAVER (Khorramshahi et al.,
2020)

1 VAE-residual Sp S Triplet, id, and
reconstruction

ResNet50

PVEN (Meng et al., 2020) 4 Multi-view (front,
side, top, and
back)

Sp H View
segmen-
tation

Triplet and id ResNet50

PGAN (Zhang et al., 2020) 16 Parts Sp H+S Part Triplet and id ResNet50
MSA (Zheng et al., 2020) 3 Multi-scale Sp and Ch S Id ResNet50
MVAN (Teng et al., 2021) 6 {Front,side,rear} ×

{global,local}
Sp S Viewpoint Triplet and id VGG18 and

ResNet50
PSA (Yang et al., 2021) 1 Global Sp S Triplet and id ResNet50
SSIA (Li et al., 2021) 1 Global Sp and Ch S Rotation Triplet, id and rotation ResNet50
CAL (Rao et al., 2021) 16 Real and

counterfactual
Sp S Triplet and id ResNet50

MUSP (This work) 10 Multi-map Sp and Ch S Triplet, id, and spatial
diversity

ResNet50

distinct features of the regions, thereby resulting in improved ac-
curacy in the vehicle Re-ID.

Representative attention-based models are shown in Table 1.
Most models have multiple attention branches. Viewpoint and
vehicle parts are widely used as criteria for creating branches.
Typical attention-based models comprise a trunk branch to learn
a global feature representation and multiple part- or viewpoint-
specific branches to learn feature representations dependent on
parts or viewpoints (Chen et al., 2020b; Guo et al., 2019; Zhang et
al., 2020).

Most models have spatial attention, whereas others have
channel-wise attention. Since a channel-wise feature map is es-
sentially for detecting the corresponding semantic attributes,
channel-wise attention can be regarded as the process of select-
ing semantic attributes that are meaningful or potentially helpful
for achieving the goal. Therefore, channel-wise feature maps are
usually used to detect discriminative vehicle parts, such as the
windshield or tires, while spatial attention feature maps are used
to extract viewpoint-aware features (Chen et al., 2020a).

Soft attention uses soft shading to focus on regions, whereas
hard attention uses image cropping to focus on regions. Moreover,
soft attention can be learnt using gradient descent, whereas hard
attention cannot be trained because there is no derivative for the
procedure ‘crop the image here’. All models use soft attention by
default, and hard attention is used when the model has vehicle
part branches.

Many models attempt to improve performance using meta-
data, which may require additional annotations. The triplet and
cross-entropy losses are used for basic training, and if any label
is used, its cross-entropy loss is added. The most used backbone
network is ResNet50, which is also used for our model.

Table 1 shows that recent attention-based approaches usu-
ally adopted multiple attention branches for viewpoints or dis-
criminative parts and introduced spatial and channel-wise atten-
tion modules, which are connected in serial or parallel depend-
ing on the developer’s choice. However, there are still opportuni-
ties to improve existing approaches, as the number of attention
branches, associated viewpoints, and parts and metadata usage
are hyperparameters or the developer’s choice.

We now classify and describe the models listed in Table 1 into
three groups: the viewpoint-centric, part-centric, and miscella-
neous attention models.

2.2.1 Viewpoint-centric attention models
Zhou and Shao (2018) proposed a viewpoint-aware attentive
multi-view inference (VAMI) model and an adversarial training
architecture to produce attention maps for different viewpoints.
They further generated multi-view features from a single-view
input image. However, the VAMI requires the viewpoint and at-
tribute information of the vehicles to train the network for the
single-view feature extraction of the vehicle. Additionally, because
of the lack of direct supervision on the generated attention maps,
the attention outcomes are noisy and would unfavourably affect
the learning of the network.

Chen et al. (2020a) proposed the viewpoint-aware channel-wise
attention mechanism (VCAM), which uses the viewpoint of a cap-
tured image to generate an attentive weight. They assumed that
the viewpoint of the image determines the visibility of the ve-
hicle parts and that channel-wise attentive weight is related to
the visibility of the corresponding part. The Re-ID feature extrac-
tion module is incorporated to the channel-wise attention mech-
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anism to extract the viewpoint-aware feature for Re-ID match-
ing. However, this method requires viewpoint annotations on ve-
hicle images for supervised learning of the viewpoint estimation
layer.

Meng et al. (2020) proposed a parsing-based view-aware em-
bedding network (PVEN) to achieve view-aware feature alignment
and enhance vehicle Re-ID. A network parses a vehicle into four
different views and then aligns the features using mask average
pooling to provide a fine-grained representation of the vehicle.
Furthermore, common-visible attention was designed to focus on
the common-visible views, which not only shortens the distance
among intra-instances but also enlarges their discrepancy. Thus,
PVEN can capture the stable and discriminative information of
the same vehicle and outperforms the previous methods by a
large margin. However, it requires additional annotation for train-
ing the vehicle part parser, which consumes considerable labour
time.

Chen et al. (2020b) proposed a dedicated semantics-guided
part-attention network (SPAN) that generates attention masks for
three different vehicle views (i.e., front, side, and rear). The part-
attention masks enable the network to extract separately discrim-
inative features in each part (or view). Moreover, to recognize cor-
rectly two positive images, the features of the co-occurrence view
are emphasized when evaluating the feature distance of two im-
ages. However, to train the part-attention network, it is crucial to
provide viewpoint semantic labels although they are not pixel-
level but image-level labels.

Teng et al. (2021) proposed a MVAN, where each branch learns
a viewpoint-specific feature for the front, rear, and side views.
Furthermore, a spatial attention model is introduced into each
branch to learn specific local cues for different viewpoints. The
viewpoint-specific features may outperform the general features
learned using a uniform network because they can focus on a lim-
ited range of views. However, to train the model to estimate the
viewpoint of an input vehicle image, we must annotate the view-
points on the image dataset.

2.2.2 Part-centred attention models
Guo et al. (2019) proposed a two-level attention network super-
vised using a multi-grain ranking loss (TAMR) to learn efficient
feature embeddings for vehicle Re-ID tasks. The two-level atten-
tion network consists of the hard part-level and soft pixel-level
attention. The former is designed to localize the salient vehicle
parts, such as the windscreen and car head. The latter provides
an additional attention refinement at a pixel-level to focus on the
distinctive characteristics within each part. The model consists
of two groups of three branches: (i) a trunk branch for learning
global feature representation with soft attention modules and (ii)
two salient part branches with two-level hard and soft attention
modules. Additionally, they proposed a coarse-to-fine multi-grain
ranking loss to further enhance the discriminative ability of the
learned features. However, as the windscreen and car head are
only visible from the front, the branches of the parts do not pro-
vide useful information from the rear or side views.

Zhang et al. (2020) introduced a part-guided attention network
(PGAN) that combines part-guided bottom-up and top-down at-
tention, global features, and partial visual features in an end-to-
end framework. First, the PGAN detects the locations of the var-
ious parts and salient regions and generates hard attention to
them. Then, soft attention weights are learned for candidate parts
to highlight the most discriminative regions and suppress the dis-
traction of irrelevant parts. Finally, PGAN aggregates the global ap-
pearance and local features to improve the feature performance.

However, we must annotate vehicle images to bounding boxes and
class labels to train an object detector to recognise vehicle parts
or regions.

2.2.3 Miscellaneous attention models
Teng et al. (2018) developed a spatial and channel attention
network (SCAN), which embeds spatial and channel attention
branches behind convolutional layers to highlight the outputs in
discriminative regions and channels, respectively. The attention
branches and convolutional layers are jointly trained using triplet
and cross-entropy losses. However, since this method only focuses
on the global feature map regardless of viewpoints, viewpoint-
centred or part-focused local attention is crucial.

Khorramshahi et al. (2020) proposed the self-supervised atten-
tion for vehicle re-identification (SAVER), which generates an at-
tention map using a variational auto-encoder (VAE). First, the
SAVER generates a coarse reconstruction image; then, it per-
forms its pixel-wise difference from the original image to con-
struct a residual image. The residual image contains crucial de-
tails required for Re-ID and acts as a pseudo-saliency or pseudo-
attention map that highlights discriminative regions in the im-
age. Finally, the convex combination (with trainable parameter
α) of the reconstructed and residual image is calculated and
passed through the Re-ID backbone for deep feature extraction.
The SAVER benefits from self-supervised attention generation and
eliminates the requirement of having extra annotations for key
points of vehicles and bounding boxes of the parts, which are used
to train specialized detectors. However, it only learns instance-
specific discriminative features but ignores significant viewpoint
changes between images of identical vehicles.

Zheng et al. (2020) proposed a multi-scale attention framework
(MSA), which includes multi-branch subnetworks that generate
different scales of feature maps using bilinear interpolation. Each
subnetwork has a spatial-channel attention block, as shown in
the SCAN. The multi-scale mechanism on the feature map level
helps supply the missing information caused by pooling opera-
tions. However, this framework does not consider view-dependent
attention, which is crucial to the vehicle Re-ID.

Li et al. (2021) first introduced self-supervised representation
learning to discover geometric features and applied an inter-
pretable attention module to condense these features. Unlike the
other attention model, which is automatically learned using the
backpropagation algorithm, the proposed attention model takes
the local spatial maxima and channel-wise maxima to construct
an attention map. By sharing the encoder of the self-supervised
learning module with the attention module, the model can dis-
cover discriminative features from automatically found geomet-
ric locations without corresponding supervision. The discovered
locations are mainly the corners of the body of a vehicle.

Rao et al. (2021) presented the counterfactual attention learning
(CAL) method based on causal inference to learn attention that is
more effective. They designed a framework to quantify the quality
of attention by comparing the effects of facts and counterfactuals
on the final prediction. Furthermore, they proposed to maximize
the difference to encourage the network to learn visual attention
that is more effective.

3. Proposed Method
The proposed multi-attention network comprises a backbone net-
work, which is used to encode a convolutional feature map for
a given image, and an attention-based network used to extract
a set of weighted feature vectors, each of which focuses on a
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specific vehicle region. The latter consists of two modules: the
spatial attention module, for soft partitioning of vehicle regions,
and the channel-wise attention module, which is based on the
squeeze and excitation (SE) method (Hu et al., 2020). The weighted
feature vectors are used to compare the distance between images
for metric learning and are fed to a classifier to predict vehicle
ID. The classifier includes batch normalization (Ioffe & Szegedy,
2015) and linear layers (Luo et al., 2019). n − 1 classifiers are ap-
plied to n − 1 weighted feature vectors, excluding the background
vector. Figure 2 depicts the overall architecture of the MUSP, and
its components are described in detail in the rest of this section.

3.1 Feature extraction from vehicle images
We selected ResNet50 (He et al., 2016) as a backbone for feature ex-
traction, removed the last fully connected (FC) layer, and used the
output of the last convolution layer. Thus, the feature extraction
process is as follows:

M = CNNB(I), M ∈ Rh×w×d, (1)

where CNNB is the base network, M is a feature map extracted
from I, and h, w, and d are dimensions of M, which depend on the
feature extractor and input image I.

3.2 Spatial multi-attention mechanism
We use vehicle partitioning to extract subtle vehicle parts for ve-
hicle Re-ID (Chen et al., 2020b; Meng et al., 2020; Sun et al., 2018)
and an attention method to refine the embedded features. Khor-
ramshahi et al. (2019b) proposed a method for detecting and re-
cropping a vehicle during pre-processing to reduce background
regions. They used a detection model and bounding box annota-
tion to depress the noisy background. We assume that the same
function can be processed within the deep learning model with-
out additional models or artificial intervention. Figure 1(b) illus-
trates that the vehicle area was accurately recognized without ad-
ditional annotation or detection. Meng et al. (2020) found that sub-
tle vehicle components significantly impact the division of parts.
However, they cannot be captured accurately using single atten-
tion because attention focuses on easily comparable features,
such as headlights and bumpers. Therefore, we used spatially sep-
arated multiple attention to focus on different vehicle areas. This
distributed attention can consider different parts; thus, the model
can see and compare more vehicle details. Consequently, we de-
signed a spatial multiple attention mechanism.

We apply convolution layers to feature M, which is encoded us-
ing the backbone network, to extract two feature maps for atten-
tion weights (A) and values (V). An attention feature map has n
channels with size h × w. Each channel corresponds to a vehi-
cle part. A value feature map has c channels with size h × w. At-
tention weights are normalized by the softmax function and are
multiplied by the corresponding values to obtain n weighted val-
ues, to which average pooling is applied to extract final weighted
feature vectors {fi}i = 0, n. Note that the softmax function is applied
to the last dimension n, rather than the spatial dimension hw. The
attention weight has exclusive activation at each spatial point of
the value map. We discard the final weighted feature vector fn.
However, if the final vector is not used in the subsequent layers
of the network, only the rest vectors are trained to pay attention
to the discriminative regions. Therefore, the attention for the in-
discriminative regions, such as the background, is assigned to the
discarded vector, which is noise (Fig. 3). The entire process can be
summarized as follows:

Figure 3: Proposed spatial attention implementation, where
⊗

denotes
matrix multiplication.

V = CNNVB(M), V ∈ Rh×w×c, (2)

A = CNNAE(M), A ∈ Rh×w×n, (3)

F = (V ⊗ σ (A))/|hw|, F ∈ Rc×n, (4)

Fd = {f1, f2, ..., fn−1}, f ∈ Rc, (5)

where CNNVE and CNNAE are value and attention extractors, re-
spectively, i.e., a simple single convolution layer with a 3 × 3 ker-
nel and 1 × 1 padding. F is the set of extracted feature vectors, f is
a single vector in feature set F, Fd is the final feature set with the
last discarded background feature, | · | is the matrix size, and σ is
softmax operation.

3.3 Channel-wise attention mechanism
A set of the weighted feature vectors Fd with spatial attention are
recalibrated by capturing and applying channel-wise attention, as
depicted in the SE block that modulates channel activation (Hu
et al., 2020). Channel-wise attention adjusts the activation inten-
sity according to the importance of each channel. This attention
reduces the intensities of unnecessary feature elements, thereby
reducing their influence on image distance calculations. Because
each feature vector relates to a feature map, which is highlighted
on a specific vehicle area, channel-wise attention should be ap-
plied to all n − 1 feature vectors, which are in contrast to the orig-
inal SE that controls one feature using FC layers.

We propose a channel-wise attention network based on an ex-
tended SE (ESE) algorithm. Furthermore, we re-shaped a set of the
weighted feature vectors Fd into one vector. We then feed the vec-

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/article/10/2/488/7055945 by N

ational Science & Technology Library user on 25 April 2023



494 | Multi-attention-based soft partition network

tor to the SE block to modulate channel activation. The ESE mod-
ule comprises two linear layers: the first and second layers are
followed by a rectified linear unit and sigmoid operation, respec-
tively. The ESE input dimension is 2048, and its output dimensions
are 128 and 2048, in sequence. The result from the ESE is channel-
wise attention, which is multiplied by the original Fd. Thus, ESE
can be summarized as follows:

fd = reshape(Fd), fd ∈ Rr, (6)

fe = fd × ρ(MLP(fd)), fe ∈ Rr, (7)

Fe = reshape(fe ), Fe ∈ Rc×(n−1), (8)

where r is |c × (n − 1)|, MLP is a multi-layer perceptron, ρ is the sig-
moid operation, and Fe is a set of n − 1 final recalibrated features.
fd and fe are one-dimensional (1D) vectors, and Fd and Fe are 2D
matrices.

3.4 Distance computation
The feature vector set (Fe) extracted from the attention-based net-
work and a feature vector (fg) obtained using the global average
pooling of M are used to calculate losses. We separately apply
triplet loss to each feature vector to train the proposed model,
and we adopt a multi-feature re-weighting function called a co-
occurrence attentive module (Chen et al., 2020b), with some mod-
ifications, to calculate the feature distance by integrating these
features for inference.

The weights of the distance between two vehicles are calcu-
lated as follows:

w(a,b),i = ARa,i × ARb,i∑n−1
j=0 ARa, j × ARb, j

, (9)

where ARa, i is an area ratio with the i-th attention weight for the a-
th image, and AR is calculated by averaging the attention weights.

The original study (Chen et al., 2020b) used weight = 1 for the
global feature, whereas we use 1

n−1 for the global feature weight
w(a, b), g. Hence, the distance between two vehicles is denoted as
follows:

D(a,b) =
n−1∑
i=0

w(a,b),i × ‖fa,i − fb,i‖2

+ w(a,b),g × ‖fa,g − fb,g‖2, (10)

where fa, i is the i-th feature for the a-th image, fa, g is a global fea-
ture, and ‖ · ‖2 is the Euclidean distance.

4. Loss Function
We use three loss functions to train the model: cross-entropy loss
for vehicle ID prediction (Lid), triplet loss for distance learning
(Ltri), and production loss to separate each attention feature (Ldiv).
The overall loss function is given as follows:

L = Lid + Ltri + Ldiv (11)

4.1 Cross-entropy loss
We apply cross-entropy loss following the vehicle ID prediction
layer:

Lid = − 1
K

n∑
l=1

K∑
i=1

C∑
j=1

yi, j,l log(ŷi, j,l ), (12)

where n is the number of features, K is the number of images in
a mini-batch, C is the number of classes, yi,j,l is the jth element
for the one-shot encoded vector, which describes ground-truth for

the ith sample in a mini-batch and lth feature vector, and ŷi jl is the
jth element of the output vector of the softmax FC layer for the
ith image and lth feature vector.

4.2 Triplet loss
The proposed network is optimized using triplet loss for metric
learning, which trains the network to minimize the distance be-
tween features from the same image classes and simultaneously
maximizes the distance between features from different image
classes. In a mini-batch that contains P identities and Q images
for each identity, each image (anchor) has Q − 1 images of the
same identity (positives) and (P − 1) × Q images of different iden-
tities (negatives). Triplet loss (Hermans et al., 2017) is defined as
follows:

Ltri =
n∑

e=1

P∑
i=1

Q∑
a=1

[
m + max

p=1...Q
p�=a

D(va,i, vp,i )

− min
j=1...P

n=1...Q
j �=i

D(va,i, vn, j )

]
+
, (13)

where va, i is the prediction vector for the a-th image of the i-th
identity group, and m is the margin to control the difference be-
tween positive and negative pair distances, which helps cluster
the distribution of the same vehicle images more densely.

4.3 Spatial diversity loss
We adopt spatial diversity loss (Chen et al., 2020b) to restrict over-
lapped areas, hence ensuring that each attention weight acts on
a different position:

Ldiv =
K∑

i=1

(ai
1 · ai

2 · . . . ai
n−1 ), (14)

where ai
n is n-th attention weight for the i-th image in the mini-

batch, and spatial diversity loss is the summation of space-wise
production of attention weights.

5. Experiments
5.1 Dataset
We tested the proposed method using three Re-ID datasets, such
as VeRi-776, VehicleID, and VERI-Wild as follows:

(i) The VeRi-776 dataset (Liu et al., 2016c) contains approxi-
mately 50 000 images, which comprises 776 vehicle ID im-
ages captured using 20 cameras. We used 576 IDs (37 778
images) for training and the remaining 200 vehicle IDs
(11 579 images) for testing. The VeRi-776 data include ve-
hicle colour and type labels.

(ii) The VehicleID dataset (Liu et al., 2016a) contains 221 763 im-
ages from 26 267 vehicle IDs, which are arranged in three
test sets (small, medium, and large) according to the num-
ber of query IDs (800, 1600, and 2400).

(iii) The VERI-Wild (Lou et al., 2019b) is a recently created
dataset from a more challenging environment than the
other two. It contains 416 314 images of 40 671 vehicle IDs
captured using 174 cameras over 1 month, under different
weather and time conditions. Its dataset is the largest vehi-
cle Re-ID dataset, which includes various weather environ-
ments in contrast to the previous two datasets. Similar to
the VehicleID, the VERI-Wild also defines small, medium,
and large test datasets with 3000, 5000, and 10 000 vehicle
IDs, respectively.
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Table 2. Model performance (mAP, CMC@1, and CMC@5) on the VehicleID.

Method Attention Matadata Small (800) Medium (1600) Large (2400)
mAP CMC@1 CMC@5 mAP CMC@1 CMC@5 mAP CMC@1 CMC@5

MD+CCL (Liu et al., 2016c) � – 0.490 0.735 – 0.428 0.668 – 0.382 0.616
OIFE (Wang et al., 2017) � – – – – – – – 0.670 0.829
RAM (Liu et al., 2018) – 0.752 0.915 – 0.723 0.870 – 0.677 0.845
EALN (Lou et al., 2019a) � 0.775 0.751 0.881 0.742 0.718 0.839 0.710 0.693 0.814
AAVER (Khorramshahi et al., 2019a) � � – 0.747 0.938 – 0.686 0.900 – 0.635 0.856
PRN (He et al., 2019) � – 0.784 0.923 – 0.750 0.883 – 0.742 0.864
VAMI (Zhou & Shao, 2018) � � – 0.631 0.833 – 0.529 0.751 – 0.473 0.703
SCAN (Teng et al., 2018) � – – – – – – – 0.654 0.785
VCAM (Chen et al., 2020a) � � – – – – – – – 0.661 0.761
TAMR (Guo et al., 2019) � � 0.676 0.660 0.797 0.637 0.629 0.768 0.610 0.597 0.739
UMTS (Jin et al., 2020) 0.870 0.809 – 0.842 0.788 – 0.828 0.761 –
HPGN (Shen et al., 2022) 0.896 0.839 – 0.862 0.800 – 0.836 0.773 –
SAVER (Khorramshahi et al., 2020) � – 0.799 0.952 – 0.776 0.911 – 0.753 0.883
PVEN (Meng et al., 2020) � – 0.847 0.970 – 0.806 0.945 – 0.778 0.920
PGAN (Zhang et al., 2020) � � – – – – – – – 0.778 0.921
MSA (Zheng et al., 2020) � 0.803 0.776 0.905 0.771 0.744 0.863 0.756 0.729 0.844
MVAN (Teng et al., 2021) � � – – – – – – – 0.726 0.831
PSA (Yang et al., 2021) � – 0.804 0.947 – 0.795 0.921 – 0.763 0.889
SSIA (Li et al., 2021) � � – 0.868 0.974 – 0.835 0.956 – 0.803 0.937
CAL (Rao et al., 2021) � 0.878 0.825 0.947 0.838 0.782 0.910 0.809 0.751 0.885

Baseline � 0.872 0.82 0.965 0.853 0.794 0.934 0.831 0.776 0.905
MUSP (This work) � 0.905 0.845 0.976 0.872 0.823 0.951 0.857 0.806 0.931

5.2 Implementation details
During pre-processing, we resized all images to 256 – 256 pixels
and applied randomly erasing and translation effects. We used the
Adam optimizer (Kingma & Ba, 2014) with weight decay and mo-
mentum of 5e−4 and 0.9, respectively. The proposed model was
trained using a batch size of 64, 16 unique vehicle IDs, a training
epoch of 90, and an initial learning rate of 0.000 35, which were
divided by 10 at 30 and 60 epochs; we used the warm-up method
with initial 10 epochs of 0.000 035–0.000 35. Furthermore, we ap-
plied label smoothing to avoid overfitting. Training required 6 and
2 h on the VehicleID and VeRi-776 datasets, respectively, and we
used an NVIDIA Quadro RTX 6000 GPU system. The training code
was written in PyTorch.

In the training phase, we used weighted feature vectors from
the spatial attention module and vehicle ID prediction vector, as
described in Section 4, for the loss function. However, we only used
Fe and fg in the inference phase with a re-weighting method to
compute the distances between vehicles.

5.3 Baseline and compared methods
We set our baseline as a strong baseline using bag-of-tricks pro-
posed by Luo et al. (2019). Our proposed model uses the atten-
tion modules to extract n weighted feature vectors. In contrast,
the baseline replaces the attention modules with an average pool-
ing layer; however, the remaining pre-processing process, learning
process, and architecture are the same.

We compared our method with some SOTA methods. As se-
lected and briefly described by Meng et al. (2020), BOW-CN (Zheng
et al., 2015) first adopted the BOW model based on the colour name
(CN). Local maximal occurrence representation (LOMO; Liao et al.,
2015) is robust to the varied lighting conditions. The fusion of at-
tributes and colour features (FACT; Liu et al., 2016b) combines the
low-level colour and high-level semantic features. The BOW-CN,
LOMO, and FACT are handcraft feature-based methods. The re-
maining are deep learning-based methods. GoogLeNet (Yang et

al., 2015a) is a GoogleNet (Szegedy et al., 2015) model fine-tuned
on the CompCars (Yang et al., 2015b) dataset. Plate-SNN (Liu et al.,
2018) uses the number-plate features to enhance the retrieval ve-
hicles. Siamese+Path (Shen et al., 2017) was used to propose the
visual-spatial-temporal path to exploit the temporal restriction.
GSTE (Bai et al., 2018) proposed group-sensitive-triplet embedding
to elegantly model the intra-class variance. VAMI (Zhou & Shao,
2017) generated features of different views using GAN, while fea-
ture distance adversarial network (FDA-Net; Lou et al., 2019b) gen-
erated the hard negative samples in the feature space. EALN (Lou
et al., 2019c) proposed an adversarial network that can generate
samples localized in the embedding space. OIFE (Wang et al., 2017)
used the 20 pre-defined key points to roughly align vehicle fea-
tures. RAM (Liu et al., 2018) horizontally split the image into three
parts. PRN (He et al., 2019) detected the window, light, and brand
of a vehicle to capture the difference between vehicle instances.
AAVER (Khorramshahi et al., 2019a) proposed an attention mecha-
nism based on vehicle key points and orientation. UMTS (Jin et al.,
2020) introduced an uncertainty-aware multi-shot network com-
posed of teacher and student networks. HPGN (Shen et al., 2022)
used a hybrid pyramidal graph network to explore the spatial sig-
nificance of feature maps. We added the following recent repre-
sentative attention-based deep learning methods, as discussed in
Section 2.2: SCAN (Teng et al., 2018), VCAM (Chen et al., 2020a),
SPAN (Chen et al., 2020b), SAVER (Khorramshahi et al., 2020), PVEN
(Meng et al., 2020), PGAN (Zhang et al., 2020), MSA (Zheng et al.,
2020), MVAN (Teng et al., 2021), PSA (Yang et al., 2021), SSIA (Li et
al., 2021), CAL (Rao et al., 2021), and MUSP.

5.4 Experiments on the VehicleID dataset
Table 2 compares VehicleID dataset outcomes for the baseline,
MUSP, and existing attention-based vehicle Re-ID models
using CMC@1 and CMC@5 metrics. The highest value without
additional metadata is shown in bold, whereas the highest value is
underlined in italics. The performance of the MUSP improved for
all CMC metrics compared with the baseline, with 2.5% and 1.1%,

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/article/10/2/488/7055945 by N

ational Science & Technology Library user on 25 April 2023



496 | Multi-attention-based soft partition network

Table 3. Model performance (mAP, CMC@1, and CMC@5) on the VERI-Wild.

Method Attention Matadata Small (3000) Medium (5000) Large (10 000)
mAP CMC@1 CMC@5 mAP CMC@1 CMC@5 mAP CMC@1 CMC@5

GoogLeNet (Yang et al., 2015a) 0.243 0.572 0.751 0.242 0.532 0.711 0.215 0.446 0.636
Triplet (Schroff et al., 2015) 0. 157 0.447 0.633 0. 133 0.403 0.590 0. 099 0.335 0. 514
Softmax (Liu et al., 2017) 0.264 0.534 0. 750 0.227 0.462 0. 699 0.176 0.379 0. 599
CCL (Liu et al., 2016a) 0.225 0.570 0. 750 0.193 0.519 0. 710 0.148 0.446 0.610
HDC (Yuan et al., 2017) 0. 291 0.571 0.789 0. 248 0.496 0.723 0. 183 0.440 0.649
GSTE (Bai et al., 2018) 0.314 0.605 0.801 0.262 0.521 0.749 0.195 0.454 0.665
Unlabelled GAN (Zhu et al., 2017) 0.299 0.581 0.796 0.247 0.516 0.744 0.182 0.436 0.655
FDA-Net (Lou et al., 2019b) 0.351 0.640 0.828 0.298 0.578 0.783 0.228 0.494 0.705
UMTS (Jin et al., 2020) 0.828 0.845 – 0.661 0.793 – 0.542 0.728 –
HPGN (Shen et al., 2022) 0.804 0.913 – 0.751 0.882 – 0.650 0.826 –
SAVER (Khorramshahi et al., 2020) � 0.809 0.945 0.981 0.753 0.927 0.974 0.677 0.895 0.958
PVEN (Meng et al., 2020) � � 0. 825 0.967 0.992 0.770 0.954 0.988 0.697 0.934 0.978

Baseline � 0.798 0.952 0.987 0.740 0.935 0.982 0.660 0.909 0.969
MUSP (This work) � 0.846 0.961 0.989 0.796 0.947 0.987 0.726 0.927 0.977

Table 4. Model performance (mAP, CMC@1, and CMC@5) on the
VeRi-776. A and M denote using attentions and using additional
metadata, respectively.

Method A M mAP CMC@1 CMC@5

BOW-CN (Zheng et al., 2015) 0.122 0.339 0.537
LOMO (Liao et al., 2015) 0.096 0.253 0.465
GoogLeNet (Yang et al., 2015a) 0.170 0.498 0.712
FACT (Liu et al., 2016b) 0.185 0.510 0.735
Plate-SNN (Liu et al., 2018) 0.278 0.614 0.788
Siamese+Path (Shen et al., 2017) 0.583 0.835 0.900
OIFE (Wang et al., 2017) � 0.480 0.894 –
RAM (Liu et al., 2018) 0.615 0.886 0.940
EALN (Lou et al., 2019c) � 0.574 0.844 0.941
AAVER (Khorramshahi et al., 2019a) � � 0.612 0.890 0.947
PRN (He et al., 2019) � 0.743 0.943 0.989
VAMI (Zhou & Shao, 2017) � � 0.501 – –
SCAN (Teng et al., 2018) � 0.499 0.822 0.908
VCAM (Chen et al., 2020a) � � 0.686 0.944 0.969
SPAN (Chen et al., 2020b) � � 0.689 0.940 0.976
UMTS (Jin et al., 2020) 0.759 0.958 –
HPGN (Shen et al., 2022) 0.802 0.967 –
SAVER (Khorramshahi et al., 2020) � 0.796 0.964 0.986
PVEN (Meng et al., 2020) � � 0.795 0.956 0.984
PGAN (Zhang et al., 2020) � � 0.793 0.965 0.983
MSA (Zheng et al., 2020) � 0.629 0.921 0.962
MVAN (Teng et al., 2021) � � 0.725 0.926 0.979
PSA (Yang et al., 2021) � 0.759 0.939 0.963
SSIA (Li et al., 2021) � � 0.810 0.967 0.986
CAL (Rao et al., 2021) � 0.743 0.954 0.979

Baseline � 0.768 0.952 0.976
MUSP (This work) � 0.780 0.956 0.979

Table 5. MUSP performance on the VeRi-776 using the number of
attentions.

Number of
attentions mAP CMC@1 CMC@5

6 0.771 0.951 0.976
5 0.780 0.956 0.979
4 0.777 0.956 0.978
3 0.763 0.953 0.977
2 0.769 0.951 0.972

2.9% and 1.7%, and 3.0% and 2.6% improvement on CMC@1 and
CMC@5 for the small, medium, and large test sets, respectively.
Compared with the existing methods, MUSP showed the highest
value in two CMC cases, whereas SSIA (Li et al., 2021) recorded the
highest value in four of six CMC cases. However, SSIA is assisted
by additional metadata and self-supervised learning. Among the
non-metadata models, MUSP recorded the highest performance in
all metrics for three VehicleID datasets. Therefore, MUSP can out-
perform the other methods if additional metainformation is used.

5.5 Experiments on the VERI-Wild dataset
Table 3 compares the performance of the baseline, MUSP, and
various existing vehicle Re-ID models using mAP, CMC@1, and
CMC@5. For the mAP metric, MUSP exhibits a remarkable perfor-
mance improvement compared with the baseline, achieving 4.8%,
5.6%, and 6.6% improvements for the small, medium, and large
datasets, respectively. The performance improvement is partic-
ularly noticeable for complex test sets with numerous IDs. The
MUSP achieved a SOTA performance with 2.1%, 2.6%, and 2.9% im-
provements over PVEN, which is the current SOTA method for the
small, medium, and large datasets, respectively. Compared with
the baseline and PVEN, the MUSP improved as the test dataset
size increased. Compared with the baseline, the MUSP improved
by 0.9%, 1.2%, and 1.8% on the CMC@1 for the small, medium, and
large datasets, respectively. For CMC@1 and CMC@5, the MUSP
achieve SOTA among the non-metadata models and compara-
ble performance to PVEN (Meng et al., 2020), which is the current
SOTA that uses metadata. Thus, MUSP consistently improves per-
formance across all test sets, confirming that increasing model
representation capability is sufficient for achieving comparable or
superior performance.

5.6 Experiments on the VeRi-776 dataset
Table 4 compares the VeRi-776 dataset outcomes for the baseline,
MUSP, and previous vehicle Re-ID models using mAP, CMC@1, and
CMC@5 metrics. Compared with the baseline, MUSP improved by
1.2% and 0.4% for mAP and CMC@1, respectively. MUSP shows
comparable performance compared with the models that use
additional metadata (e.g., AAVER, PRN, and PVEN). However, it
does not require metadata and achieves a reasonable perfor-
mance improvement using only different attention mechanisms.
The SSIA (Li et al., 2021) achieved SOTA for all metrics. However,
as mentioned above, SSIA is assisted by additional metainforma-
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Figure 4: The effect of omitting a spatial attention map from the pipeline: (a), (c), and (e) are heat maps depicting the attention weights of each map
when all four spatial attention maps are used. (b), (d), and (f) are heat maps depicting the attention weights of each map when the last spatial
attention map among the five is not used in subsequent computation for the final result.
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Table 6. Improvement in model performance when omitting a spatial attention map from the pipeline. For the Veri-776 and VehicleID
datasets, the performance of the following two models was compared. In the first model, one of the five spatial attention maps is excluded
from the pipeline, whereas in the second model, all four spatial attention maps are used for training and inference. The result showed
that the first model outperformed the second model.

Method VeRi-776 VehicleID
Small (800) Medium (1600) Large (2400)

mAP CMC@1 CMC@5 mAP CMC@1 CMC@5 mAP CMC@1 CMC@5 mAP CMC@1 CMC@5

4 Attentions 0.767 0.947 0.977 0.898 0.842 0.974 0.876 0.820 0.951 0.857 0.803 0.931
5-1 Attentions 0.780 0.956 0.979 0.905 0.845 0.976 0.872 0.823 0.951 0.857 0.806 0.931

Table 7. The effects of the channel-wise attention module on the
VehicleID dataset (small test). The ESE is the main part of the
module.

Method CMC@1 CMC@5

MUSP w ESE 0.845 0.976
MUSP w/o ESE 0.830 0.961

Figure 5: ESE impact on the MUSP performance using training epoch on
the small VehicleID dataset. The MUSP achieves consistently higher
performance with faster convergence when including the ESE module.

Table 8. Sigmoid- and softmax-based attention modules for the
MUSP on the VeRi-776.

Method mAP CMC@1 CMC@5

MUSP w softmax 0.780 0.956 0.979
MUSP w sigmoid 0.772 0.954 0.977

Table 9. The mAP, CMC@1, and CMC@5 on cross-domain settings.

Method Train Test CMC@1 CMC@5

RAM (Liu et al., 2018) VehicleID VehicleID 0.752 0.915
EALN (Lou et al., 2019a) VehicleID VehicleID 0.751 0.881
PVEN (Meng et al., 2020) VERI-Wild VehicleID 0.772 0.944
Baseline VERI-Wild VehicleID 0.737 0.931
MUSP (This work) VERI-Wild VehicleID 0.797 0.951

tion and self-supervised learning. Among the non-metadata mod-
els, MUSP recorded the highest performance in all three met-
rics.

5.7 Ablation study
5.7.1 Number of spatial attention maps
According to Chen et al. (2020a)’s interpretation, the spatial at-
tention mechanism extracts viewpoint-aware features and the
channel-wise attention mechanism detects discriminative vehi-
cle parts. Experiments were conducted to observe how the num-
ber of attentions affects performance and the number of attention
optimal for the experimental datasets. Generally, increasing the
number of attention increases the number of views, thereby im-
proving model performance. Reducing the number will have the
opposite effect. Table 5 presents the optimal performance for the
five attention. Those less than three produced a significantly lower
performance than four or more attention. Therefore, it can be in-
terpreted that few viewpoint-aware attention cannot capture the
discriminative features of a vehicle from sufficiently diverse an-
gles. The experiments illustrate that the desired part recognition
and comparison can only be performed if four or more spatial at-
tention are used.

5.7.2 Effects of omitting a spatial attention map
Figure 4 shows the heat maps corresponding to the weights of
spatial attention maps trained using the VehicleID dataset. Fig-
ures 4(a), (c), and (e) illustrate the attention distribution when all
four spatial attention maps are used for inference. Figures 4(b), (d),
and (f) show the attention distribution when four out of five at-
tention maps are used. As shown in the figures, excluding one at-
tention map from the computational pipeline during training con-
siderably reduces the noise. We also compared the performance of
the two models for the VeRi-776 and VehicleID datasets. As shown
in Table 6, the model using four out of five attention maps outper-
forms the model using all four spatial attention maps for training
and inference.

5.7.3 Effects of the channel-wise attention module
Table 7 compares the MUSP performance with and without the
channel-wise attention module on the VehicleID dataset. The ESE
is the central element of the channel-wise attention module. It
improved by 0.015 for the CMC@1 and CMC@5, verifying that it
successfully recalibrated channel information, which is helpful
for distance computation and embedding. It receives n − 1 fea-
tures representing discriminative vehicle part regions from an ar-
bitrary viewpoint and adjusts the channel activation by consid-
ering the overall system performance. The channel activation is
reduced using ESE to suppress its effect when some channel infor-
mation is unnecessary for vehicle comparison. Figure 5 compares
the ESE impact using epoch. Here, the ESE improved performance
for all epochs and accelerated convergence.
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Figure 6: Results of applying the MUSP to three primary vehicle Re-ID datasets. This model is trained using the VehicleID dataset and tested on three
different datasets. Each column corresponds to the attention maps. Regardless of orientation and vehicle type, each attention has a high activation on
one or more specific regions. For example, the first attention reacts to the bottom of the headlights, the second reacts to the headlights, and the third
reacts to the front or rear window. The fourth has a high activation on the lower parts of the window and vehicle and the fifth is for the background.
Attention is invariant to the domain and orientation attributes even for the unseen domains not used in training the model (e.g., the VERI-Wild and
VeRi-776 datasets).

5.7.4 Activation functions of spatial attention module
CBAM (Woo et al., 2018) and SENet (Hu et al., 2020) used a sigmoid-
based attention module, whereas the proposed spatial attention
module is based on softmax. Softmax satisfies our spatial parti-
tion purposes more closely because it has a normalization effect
that sets the sum of the dimension elements to one. Combining
softmax and spatial diversity loss produces exclusively spatial ac-
tivation. Gradient vanishing can occur for the sigmoid approach
as training progresses, thus degrading performance. We compared
the softmax- and sigmoid-based attention modules to verify that
the former is the more suitable activation function. The spatial
attention module discards the last attention weight, so we re-
tained four and five attention for the sigmoid- and softmax-based
modules, respectively. Table 8 illustrates that the softmax-based
attention improved by 0.8%, 0.3%, and 0.2% compared with the
sigmoid-based attention for the mAP, CMC@1, and CMC@5 met-
rics, respectively. Thus, it showed superior overall performance
improvement to the sigmoid-based attention.

5.8 Cross-domain experiments
These experiments confirm that the proposed MUSP performs
particularly well for larger test datasets close to real-world en-
vironments. Recognizing previously unseen vehicles is another
problem that emerges in real-world environments. Therefore, we

conducted a cross-domain experiment comparing the RAM (Lin
et al., 2014) and EALN (Lou et al., 2019a), which are trained and
tested on the VehicleID, with the PVEN (Meng et al., 2020) and
MUSP trained on the VERI-Wild and tested on the VehicleID.

Table 9 presents an overwhelming MUSP performance for the
cross-domain tests; the attention partition operates effectively
even for vehicles not previously learned. The MUSP exceeded the
models trained on the same dataset and improved by 6% and 2.5%
compared with the baseline and PVEN, respectively. These results
are consistent with those in Fig. 6, where vehicle parts on the VeRi-
776 and VERI-Wild datasets were equally identified, although the
MUSP was trained on the VehicleID dataset.

6. Conclusions
In this study, we proposed a MUSP network based on multiple
soft attentions for vehicle Re-ID. This model can learn to highlight
the most discriminant regions and suppress the distraction of ir-
relevant parts using multiple spatial attention and channel-wise
attention mechanisms without introducing any artificial part-
specific and view-dependent attention branches. We introduced
a novel method that can considerably reduce noise in spatial at-
tention maps, thereby solving the problem of noise generation
by spatial attention mechanisms in attention maps. This archi-
tecture achieved significant performance improvement without
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using additional metadata. The visualization in Fig. 6 illustrates
that the attention parts selected using the spatial attention mod-
ule also operate effectively on unseen data and perform invariant
orientations. The spatial and channel-wise attention modules are
vital MUSP components, which were experimentally verified on
the VehicleID, VERI-Wild, and VeRi-776 datasets. The experiments
showed that the proposed method was comparable to or superior
to current SOTA methods. Particularly, among the attention-based
models that do not use additional metadata, our model achieved
a SOTA and showed comparable performance to the methods that
used metadata. As this performance is achieved without using
metadata attributes or post-processing, such as re-ranking, the
performance of the model can be significantly improved when
they are used.

For future research, we will consider applying the MUSP to the
feature maps extracted from various levels of the layers of a back-
bone network, such as the SENet. The MUSP is currently applied
only to the resulting feature map of the last layer of the backbone.
However, applying it to feature maps extracted from the middle
layers of the backbone will significantly improve performance.
Furthermore, the proposed multiple soft attention method can be
applied to various areas (Mohammed et al., 2022; Shi et al., 2022;
Yan, 2018), such as monitoring traffic (Baek & Lee, 2022; Jain et al.,
2019), production lines (Park & Lee, 2022), or intelligent human-
machine systems (Eom & Lee, 2015, 2022; Lee & Yoon, 2020).
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