모두의연구소의 교육, 문화, 기술 등 다양한 이야기와 경험을 함께 나눕니다
람다 표현식에 대해 알아보고, 함께 자주 쓰이는 map(), filter(), reduce()가 무엇인지 알아보고, 왜 실전에서 사용되고, 어떻게 사용해야 잘 사용할 수 있을 지 실습을 통해서 이해해보자.
머신러닝을 사용한 회귀 문제에서 모델의 성능을 평가하기 위해 다양한 지표가 사용됩니다. 그 중에서도 MAE(Mean Absolute Error), MSE(Mean Squared Error), 그리고 RMSE(Root Mean Squared Error)는 가장 널리 사용되는 지표입니다.
기계번역에서 많이 사용하고 있는 지표중 하나인 BLEU 스코어는 간단한 수학적인 연산만으로도 기계번역 품질을 평가할 수 있습니다. 물론 몇가지 한계점은 존재하긴 하지만 간편하게 사용할 수 있다는 점에서 아직까지도 많은 사랑을 받고 있습니다.
챗GPT만 알고 있었다면 이제 LLM의 세계로! 생성형 AI, LLM, 챗GPT의 기본 개념, LLM의 핵심 기술인 딥러닝과 트랜스포머, LLM의 활용 방법과 미래 전망까지, 흥미진진한 이야기 속으로 떠나보아요.
컴퓨터 비전(Computer Vision)은 인공지능의 한 분야로, 컴퓨터가 이미지나 동영상을 이해하고 해석할 수 있도록 하는 기술입니다. 컴퓨터 비전 분야에는 이미지 분류(Image Classification), 객체 감지(Object Detection), 의미론적 분할(Semantic Segmentation) 등 다양한 문제들이 연구되고 있습니다. 이 중에서도 YOLO(You Only Look Once)는 객체 감지 분야에서 혁신적인 아이디어를 제시하며 발표 당시 큰 주목을 받았고 발전에 발전을 거듭하고 있습니다.
5월 7일부터 11일까지 ICLR 2024가 오스트리아 빈에서 열렸습니다. 이번 ICLR 2024에서 우수 논문 5개를 선정했고 이를 간단하게 설명하고 리뷰어들의 리뷰까지 첨부해서 글을 작성해보았습니다.
정보 검색 모델을 평가하는 MAP, MRR, DCG, NDCG 방법에 대해 알아보자.
활성화 함수에 비선형 특성을 더하면, 딥러닝 모델이 훨씬 고차원의 복잡한 특성을 학습할 수 있습니다. 인공 신경망의 구조를 통해 데이터가 선형, 비선형 적으로 변환되는 과정을 관찰해봅니다. 딥러닝이 비정형적인 데이터에서도 특징을 추출하여 학습할 수 있는 이유에 대해 이해할 수 있습니다.
LLM(Large Language Model)의 많은 장점에도 불구하고 단점을 보완하기 위한 RAG(검색 증강 생성)이 많은 관심을 받고 있습니다. RAG의 기본 개념, 등장 배경, 원리, 적용 사례 등을 알아보겠습니다.
경사하강법에서 learning rate의 중요성과 함께 적절한 learning rate를 찾는 방법을 소개합니다. Learning Rate Decay , Cyclical learning rates 등이 있습니다.
머신러닝 시스템 을 어떤 구성요소로 디자인할 지 고민 해봅시다. Batch training, checkpoint, transfer learning 등 모델 학습 과정에 활용하기 좋은 기초적인 디자인 패턴 에 대해 예시 코드로 알아봅니다.
머신러닝 시스템 의 디자인 패턴 에 대한 내용입니다. 모델 제작 만큼이나 서비스 구현이 중요한 만큼, 이런 형태의 시스템은 절대 피해서 구성해야 한다는 내용의 anti_pattern 입니다. 명쾌하게 정리된 자료를 모아 요약으로 남겨둡니다.
ChatGPT의 출현 이후로 가파르게 성장하고 있는 생성형 AI 에 대해 알아보아요. 생성형 AI 주요 종류와 특징, 생성형 AI가 등장하기 전과 후의 의미, 생성형 AI 핵심 기술 및 주요 알고리즘, 생성형 AI에 열광하는 이유 등을 함께 알아보아요.
제조업에서 제품의 품질 관리와 결함 감지는 필수적인 과제입니다. 그동안 사람의 육안 검사에 의존해왔지만 대규모 생산 환경에는 적합하지 않았습니다. 생생 AI를 통한 새로운 대안이 대두되고 있습니다.
트랜스포머의 전성시대가 언제까지 갈까요? 현재 많은 연구진들이 SSM 모델을 기반으로 다양한 실험을 진행하고 있습니다. 물론 SSM도 완벽하지 않아 다양한 방법론으로 훈련방법을 바꿔가면서 연구하고 있습니다.
오늘도 새롭게 맞닥뜨린 코드, 어떻게 분석해야하는지 난감하신 분들을 위해 GPT 가 함께 지도를 그려줍니다. 번거롭고 귀찮았던 UML 다이어그램 작성을 GPT 와 함께 손쉽게 만들어봅니다. 미로같이 복잡한 코드를 깔끔하게 펼쳐보세요!
머신러닝과 딥러닝에서 아주 중요한 개념 중 하나인 손실함수에 대해 이야기해보려고 합니다. 손실함수는 모델의 학습을 이끄는 나침반과 같은 역할을 합니다. 이번 글에서는 손실함수가 무엇인지, 어떤 종류가 있는지, 그리고 왜 중요한지 살펴보도록 하겠습니다.
머신 러닝 모델을 만드는 필수 요소, 손실 함수 에 대해 알아봅니다. 머리로만 알고있던 손실 함수를 직접 눈으로 확인하는 시간! 손실 함수의 역할을 이해하고, 고민이 필요해야하는 상황과 이에 맞는 예시들을 확인합니다.